Hallo Dieter,
Was du konstruieren willst ist ein
Regelmäßiges Polygon mit einem Umkreisradius
r_u von 72/2 = 36 cm und einer Kantenlänge
a von 10 cm.
Anhand des Bestimmungsdreiecks (
https://de.wikipedia.org/wiki/Regelmäßi ... n_qtl2.svg) kannst du damit den Winkel alpha/2 relativ einfach bestimmen: cos( alpha/2 ) = (
a/2) /
r_u) = 5 cm / 36 cm
Der resultierende Innenwinkel alpha/2 wäre dann 82 Grad. Zwei Stücke aneinander hätten damit einen Außenwinkel von 16 Grad. Dummerweise ist 360/16 aber 22,5. Du kannst also deinen (Um)Kreis mit Radius 36 nicht aus 10 cm Stücken bauen. Du brauchst einen ganzzahligen Teiler von 360 beim Außenwinkel. Eingesetzt in die oben genannten Formel lässt sich daraus die passende Kantenlänge
a bestimmen.
Varianten:
Außenwinkel von 15 Grad, was einen Innenwinkel alpha/2 von 82,5 Grad erfordern würde: Kantenlänge
a = 9,4 cm (24 Stücke)
Außenwinkel von 18 Grad, was einen Innenwinkel alpha/2 von 81 Grad erfordern würde: Kantenlänge
a =11, 26 cm (20 Stücke)
Und jetzt hoffe ich, das Heike das noch einmal nachrechnet. Der Glühwein auf dem Weihnachtsmarkt war nämlich sehr lecker heute
Grüße,
Daniel